Package: kanjistat (via r-universe)

September 7, 2024

Type Package

Title A Statistical Framework for the Analysis of Japanese Kanji
Characters

Version 0.14.1.9000

Date 2024-06-04

Maintainer Dominic Schuhmacher
<dominic.schuhmacher@mathematik.uni-goettingen.de>

Description Various tools and data sets that support the study of
kanji, including their morphology, decomposition and concepts
of distance and similarity between them.

URL https://dschuhmacher.github.io/kanjistat/

BugReports https://github.com/dschuhmacher/kanjistat/issues
Depends R (>= 4.1)

Imports methods, graphics, grDevices, utils, crayon, dendextend,
gsubfn, Matrix, png, purrr, RANN, rlang, ROI, sysfonts,
showtext, stringi, stringr, transport (>= 0.15), xml2,
lifecycle, Repp

Suggests dplyr, jsonlite, kanjistat.data, knitr, rmarkdown,
ROLplugin.glpk, systemfonts, testthat (>= 3.0.0), tibble,
withr

Additional_ repositories https://dschuhmacher.github.io/drat

License GPL (>= 3)

Encoding UTF-8

LazyData true

RoxygenNote 7.3.1

VignetteBuilder knitr

Config/testthat/edition 3

Roxygen list(markdown = TRUE)

LinkingTo Rcpp

https://dschuhmacher.github.io/kanjistat/
https://github.com/dschuhmacher/kanjistat/issues
https://dschuhmacher.github.io/drat

cjk__escape

Repository https://dschuhmacher.r-universe.dev
RemoteUrl https://github.com/dschuhmacher/kanjistat
RemoteRef HEAD

RemoteSha cdf58de0ddf900fe239921c5{48fb33e2622d47d

Contents
cik_escape L 2
codepoint 3
compare_neighborhoods 4
convert_kanji oL e e 5
distdata oL 6
fivebetas L e 7
fivetrees e e 8
get_strokes e 9
get_strokes__compo 9
kanjidata 10
kanjidist 12
kanjidistmat e 14
kanjimat oL oL 15
kanjivec oL L e 17
kmatdist Lo 20
kmatdistmat Lo 21
kreadmean e e e 22
lookup 22
OPHIONS L L e e 23
plot.kanjimat oL 24
plot.kanjivec L 25
plotkanji L L 26
pooled_similarity L 28
print.kanjiveco Lo o 29
read_kanjidic2 L 29
samplekan oL 31
sedist L e e 32
str.kanjivec L. 33

Index 34

cjk_escape Replace CJK characters in files by escape sequences
Description

All CJK characters in the file(s) found at the specified path are substituted by their Unicode
escape sequences (\u + 4 digit hex number or \U + 8 digit hex number where necessary).

codepoint 3

Usage

cjk_escape(path, outdir = NULL, verbose = TRUE)

Arguments
path the path to a directory or a single file.
outdir the directory where the output files are written. Defaults to the subdirec-
tory out of the directory in path. The output files have the same names
as the originals.
verbose whether to print a message for each output file.
Details

If path is a directory, the replacement is performed for all files at that location (subdirec-
tories are ignored). If outdir is the same as path, the original files are overwritten without
warning.

If path is a file, the replacement is limited to this file. If outdir is the same as dirname (path),
the files are overwritten without warning.

Value

No return value, called for side effects.

codepoint Convert between Unicode codepoint and kanji

Description

Given codepoints cp, the function codepointToKanji transforms to UTF-8, which will
typically show as the actual character the codepoints stands for. Vice versa, given (UTF-8
encoded) kanjis kan, the function kanjiToCodepoint transforms to unicode codepoints.

Usage

codepointToKanji(cp, concat = FALSE)

kanjiToCodepoint (kan, character = FALSE)

Arguments
cp a vector of character strings or objects of class hexmode, representing
hexadecimal numbers.
concat logical. Shall the returned characters be concatenated?
kan a vector of kanjis (strings of length 1) or a single string of length >= 1

of kanjis.

character logical. Shall the returned codepoints be of class ”character” or hexmode.

4 compare__neighborhoods

Value
For codepointToKanji a character vector of kanji. For kanjiToCodepoint a vector of
hexadecimal numbers (class hexmode).

Examples

codepointToKanji(c("51b7", "6696", "71b1i"))
kanjiToCodepoint (" ")

compare_neighborhoods
Compare distances of nearest kanji

Description

List distances to nearest neighbors of a given kanji in terms of a reference distance (which
is currently only the stroke edit distance) and compare with values in terms of another
distance (currently only the component transport distance, a.k.a. kanji distance).

Usage
compare_neighborhoods (
kan,
refdist = "strokedit",
refnn = 10,
compdist = "kanjidist",

compnn = 0,

)
Arguments
kan a kanji (currently only as a single UTF-8 character).
refdist the name of the reference distance (currently only ”strokedit”).
refnn the number of nearest neighbors in terms of the reference distance.
compdist a character vector. The name(s) of one or several other distances to
compare with (currently only “kanjidist”).
compnn the number of nearest neighbors in terms of the other distance(s). If
this is positive it is assumed that the suggested package kanjistat.data is
available.
further parameters that are passed to kanjidist().
Value

A matrix of distances with refnn + compnn columns named by the nearest neighbors of kan
(first in terms of the reference distance, then the other distances) and 1 + length(compdist)
rows named by the type of distance.

convert__kanji 5

Warning

[Experimental]

This is only a first draft of the function and its interface and details may change considerably
in the future. As there is currently no precomputed kanjidist matrix, there is a huge
difference in computation time between setting compnn = 0 (only kanji distances to the
refnn nearest neighbors in terms of refdist have to be computed) and setting compnn to
any value $> 0% (kanji distances to all 2135 other Jouyou kanji have to be computed in
order to determine the compnn nearest neighbors; depending on the system and parameter
settings this can take (roughly) anywhere between 2 minutes and an hour).

Examples

compare_neighborhoods(" ", refnn=5, compo_seg_depth=4, approx="pcweighted",

compnn=0, minor_warnings=FALSE)
convert_kanji Convert between kanji formats
Description

Accept any interpretable representation of kanji in terms of index numbers, UTF-8 character
strings of length 1, UTF-8 codepoints or kanjivec objects and convert it to all or any of
these formats.

Usage

convert_kanji(
key,
output = c("all", "index", "character", "hexmode", "kanjivec"),
simplify = TRUE

)
Arguments
key an atomic vector or list of kanji in any combination of formats.
output a string describing the desired output.
simplify logical. Whether to simplify the output to an atomic vector or keep
the structure of the original vector. In either case it depends on output
whether this is possible.
Details

Index numbers are in terms of the order in kbase. UTF-8 codepoints are usually of class
"hexmode”, but character strings starting with "0x” or "0X” are also accepted in the key.

For output = "kanjivec", the GitHub package kanjistat.data has to be available or an
error is returned. For output = "all", component kanjivec is set to NA if kanjistat.data is
not available.

6 distdata

Value

A vector of the same length as key. If simplify is TRUE, this is an atomic vector for output

= "index”, ”character” or "hexmode”, and a list for output = "kanjivec” or "all” a list. If
simplify is FALSE, the original structure (atomic or list) kept whenever possible.

Examples

convert_kanji(as.hexmode("99ac"))
convert_kanji("0x99ac") # same

convert_kanji(500, "character") == kbase$kanji[500] # TRUE
distdata Precomputed kanji distances
Description

Precomputed kanji distances

Usage

dstrokedit
dyehli

Format

Symmetric sparse matrices containing distances between a key kanji, its ten nearest neigh-
bors and possibly some other close kanji. For dstrokedit, these are the stroke edit distances
according to Yencken and Baldwin (2008). For dyehli, these are the bag-of-radicals dis-
tances according to Yeh and Li (2002). Both are an instance of the S4 class dsCMatrix (sym-
metric sparse matrices in column-compressed format) with 2133 rows and 2133 columus.

All pre-2010 jouyou kanji that are also post-2010 jouyou kanji are included. The indices
are those from kbase.

Source

Datasets from https://lars.yencken.org/datasets, made available under the Creative
Commons Attribution 3.0 Unported licence.

Computed as part of Yencken, Lars (2010) Orthographic support for passing the reading
hurdle in Japanese. PhD Thesis, University of Melbourne, Melbourne, Australia.

References

Yeh, Su-Ling and Li, Jing-Ling (2002). Role of structure and component in judgements
of visual similarity of Chinese characters. Journal of Experimental Psychology: Human
Perception and Performance, 28(4), 933-947.

Yencken, Lars, & Baldwin, Timothy (2008). Measuring and predicting orthographic associ-
ations: Modelling the similarity of Japanese kanji. In: Proceedings of the 22nd International
Conference on Computational Linguistics (Coling 2008), pp. 1041-1048.

https://lars.yencken.org/datasets
https://lars.yencken.org/papers/phd-thesis.pdf
https://lars.yencken.org/papers/phd-thesis.pdf

fivebetas 7

Examples

Find index for kanji
bu_index <- match(" ", kbase$kanji)

Look up available stroke edit distances for
non_zero <- which(dstrokedit[bu_index,] !'= 0)
sed <- dstrokedit[non_zero, bu_index]

names (sed) <- kbase[non_zero,]$kanji
sort(sed)

Look up available bag-of-radicals distances for
non_zero <- which(dyehli[bu_index,] != 0)

bord <- dyehli[non_zero, bu_index]

names (bord) <- kbase[non_zero,]$kanji

sort (bord)

fivebetas A sample list of kanjivec objects

Description

A sample list of kanjivec objects

Usage

fivebetas

Format

fivebetas is a list of five kanjivec objects representing the basic kanji ,,,, containing
"beta” components, which come in fact from two different classical radicals:
e« —> on the left: mound, small village

e —> on the right: large village

Source

The list has been generated with the function kanjivec with parameter flatten="intelligent"
from the corresponding files in the KanjiVG database by Ulrich Apel (https://kanjivg.
tagaini.net/).

Examples

oldpar <- par(mfrow = c(1,5), mai = rep(0,4))
invisible(lapply(fivebetas, plot, seg_depth = 2))
par (oldpar)

https://kanjivg.tagaini.net/
https://kanjivg.tagaini.net/

8 fivetrees

fivetrees Sample lists of kanjimat objects

Description

Sample lists of kanjimat objects

Usage

fivetreesl
fivetrees?2

fivetrees3

Format

fivetreesl, fivetrees2 and fivetrees3 are lists of five kanjimat objects each, repre-
senting the same five basic kanji , , ,,, containing each a tree component. Their matrices
are antialiased 64 x 64 pixel representations of the kanji. The size is chosen as a compromise
between aesthetics and memory/computational cost, such as for kmatdist.

All of them are in handwriting style fonts. fivetreesi is in a Kyoukasho font (schoolbook
style), fivetrees?2 is in a Kaisho font (regular script calligraphy font), fivetrees3 is in a
Gyousho font (semi-cursive calligraphy font).

An object of class list of length 5.
An object of class 1ist of length 5.
An object of class 1ist of length 5.

Source

The list has been generated with the function kanjimat using the Mac OS pre-installed
YuKyokasho font (fivetreesl), as well as the freely available fonts nagayama_ kai by Norio
Nagayama and KouzanBrushFontGyousyo by Aoyagi Kouzan.

Examples

oldpar <- par(mfrow = c(3,5))
invisible(lapply(fivetreesl, plot))
invisible(lapply(fivetrees2, plot))
invisible(lapply(fivetrees3, plot))
par (oldpar)

get__strokes 9

get_strokes Get the strokes of a kanjivec object

Description
The strokes are the leaves of the kanjivec stroketree. They consist of a two-column matrix
giving a discretized path for the stroke in the unit square [0, 1]? with further attributes.
Usage

get_strokes(kvec, which = 1:kvec$nstrokes, simplify = TRUE)

Arguments
kvec an object of class kanjivec
which a numeric vector specifying the numbers of the strokes that are to be
returned. Defaults to all strokes.
simplify logical. Shall only the stroke be returned if which has length 17
Value

Usually a list of strokes with attributes. Regardless of whether which is ordered or contains
duplicates, the returned list will always contain the strokes in their natural order without
duplicates. If which has length 1 and simplified = TRUE, the list is avoided, and only the
single stroke is returned.

See Also

get_strokes_compo

Examples

kanji <- fivebetas[[5]]

get_strokes(kanji, c(3,10)) # the two long vertical strokes in
get_strokes_compo Get the strokes of a specific component of a kanjivec object
Description

The strokes are the leaves of the kanjivec stroketree. They consist of a two-column matrix
giving a discretized path for the stroke in the unit square [0, 1]? with further attributes.

Usage

get_strokes_compo (kvec, which = c(1, 1))

10

Arguments

kvec

which

Value

kanjidata

an object of class kanjivec

a vector of length 2 specifing the index of the component, i.e. the compo-
nent used is pluck(kvec$components, !!!which). The default c(1,1)
refers to the root component (full kanji), so all strokes are returned.

A list of strokes with attributes.

See Also

get_strokes

Examples

kanji <- fivebetas[[5]]
get the three strokes of the component in
rad <- get_strokes_compo(kanji, c(2,1))

plot(0.5, 0.5, x1lim=c(0,1), ylim=c(0,1), type="n", asp=1, xaxs="i", yaxs="i", xlab="",

invisible(lapply(rad, lines, lwd=4))

kanjidata

Data on kanji

Description

The tibbles kbase and kmorph provide basic and morphologic information, respectively, for
all kanji contained in the KANJIDIC? file (see below)

Usage

kbase

kmorph

Format

kbase is a tibble with 13,108 rows and 13 variables:

kanji the kanji

unicode the Unicode codepoint

strokes the number of strokes

”n

class one of four classes: "kyouiku”, ”jouyou”, ”"jinmeiyou” or "hyougai”

grade a number from 1-11, basically a finer version of class, same as in KANJIDIC2, except
that we assgined an 11 for all hyougaiji (rather than an NA value)

ylab=" n)

kanjidata 11

kanken at what level the kanji appears in the Nihon Kanji Nouryoku Kentei (Kanken)

jlpt at what level the kanji appears in the Japanese Language Proficiency Test (Nihongou
Nouryoku Shiken)

wanikani at what level the kanji is learned on the kanji learning website Wanikani

frank the frequency rank (1 = most frequent) ”based on several averages (Wikipedia,
novels, newspapers, ...)"

frank_news the frequency rank (1 = most frequent) based on news paper data (2501
most frequent kanji over four years in the Mainichi Shimbun)

read_ on, read_ kun a single ON reading in katakana
read__kun a single kun reading in hiragana

mean a single English meaning of the kanji
kmorph is a tibble with 13,108 rows and 15 variables:

kanji the kanji

strokes the number of strokes

radical the traditional (Kangxi) radical used for indexing kanji (one of 214)

radvar the variant of the radical if it is different, otherwise NA

nelson__c the Nelson radical if it differs from the traditional one, otherwise NA

idc ideographic description character (plus sometimes a number or a letter) describing the
shape of the kanji

components visible components of the kanji; originally from KRADFILE

skip the kanji’s SKIP code

mean a single English meaning of the kanji (same as in kbase)

Details

The single ON and kun readings and the single meaning are for easy identification of the
more difficult kanji. They are the first entry in the KANJIDIC? file which may not always
be the most important one. For full readings/meanings use the function lookup or consult
a dictionary.

Source

Most of the data is directly from the KANJIDIC?2 file. https://www.edrdg.org/wiki/
index.php/KANJIDIC_Project

Variables jlpt, frank, idc, components were taken from the Kanjium data base https:
//github.com/mifunetoshiro/kanjium

Variable components is originally from RADKFILE/KRADFILE. https://www.edrdg.
org/)

The use of this data is covered in each case by a Creative Commons BY-SA 4.0 License.
See the package’s LICENSE file for details and copyright holders.

Variable "class” is derived from "grade”.
Variable “kanken” was compiled based on the Wikipedia description of the test levels (as
of September 2022).

https://www.edrdg.org/wiki/index.php/KANJIDIC_Project
https://www.edrdg.org/wiki/index.php/KANJIDIC_Project
https://github.com/mifunetoshiro/kanjium
https://github.com/mifunetoshiro/kanjium
https://www.edrdg.org/
https://www.edrdg.org/

12

kanjidist

kanjidist

Compute distance between two kanjivec objects based on hierar-
chical optimal transport

Description

The kanji distance is based on matching hierarchical component structures in a nesting-free
way across all levels. The cost for matching individual components is a cost for registering
the components (i.e. alligning there position, scale and aspect ratio) plus the (relative
unbalanced) Wasserstein distance between the registered components.

Usage

kanjidist(
k1,
k2,

compo_seg_depthl
compo_seg_depth2

p=1
C=0.2,

approx = c("grid",

3,
3,

pc", "pcweighted"),

type = c("rtt", "unbalanced", "balanced"),
size = 48,

lwd = 2.5,

density = 30,

verbose = FALSE,

minor_warnings = TRUE

Arguments

k1, k2

two objects of type kanjivec.

compo_seg_depthl, compo_seg_depth2

two integers > 1. Specifies for each kanji the deepest level included for
component matching. If 1, only the kanji itself is used.

P the order of the Wasserstein distance used for matching components. All
distances and the penalty (if any) are taken to the p-th power (which is
compensated by taking the p-th root after summation).

C the penalty for extra mass if type is "rtt" or "unbalanced", i.e. we add
C~p per unit of extra mass (before applying the p-th root).

approx what kind of approximation is used for matching components. If this is

"grid", a bitmap (raster image) is used, otherwise lines are approximated
by more freely spaced points. For "pc" (point cloud) each point has the
same weight and points are placed in a (more or less) equidistant way. For
"pcweighted" points are further apart along straight lines and around the
center of the Bezier curves that describe the strokes. The weights of the

kanjidist 13

points are then (more or less) proportional to the amount of ink (stroke
length) they represent.

type the type of Wasserstein distance used for matching components based on
the grid or point cloud approximation chosen. "unbalanced" means the
weights (pixel values if approx = "grid) are interpreted as mass. The
total masses in two components be very different. Extra mass can be dis-
posed of at cost C™p per unit. "rtt" is computationally the same, but the
final distance is divided by the maximum of the total ink (sum of weights)
in each component to the 1/p. "balanced" means the weights are nor-
malized so that both images have the same total mass 1. Everything has
to be transported, i.e.\ disposal of mass is not allowed.

size side length of the bitmaps used for matching components (if approx = "grid).

lwd linewidth for drawing the components in these bitmaps (if approx = "grid).

density approximate number of discretization points per unit line length (if approx != "grid)
verbose logical. Whether to print detailed information on the cost for all pairs of

components and the final matching.
minor_warnings

logical. Should minor_warnings be given. If FALSE, the warnings about
substantial distances between bitmaps/pointclouds standing for the same
component and the use of a workaround due to missing strokes in com-
ponent decompositions are suppressed. While these warnings indicate to
same extent that things are not going exactly as planned, they are usu-
ally not of interest if a larger number of kanji distances is computed and
obscure the visibility of more important warnings (if any).

Details

For the precise definition and details see the reference below. Parameter C corresponds to
b/2'/? in the paper.

Value

The kanji distance, a non-negative number.

Warning

[Experimental]

The interface and details of this function will change in the future. Currently only a minimal
set of parameters can be passed. The other parameters are fixed exactly as in the "prototype
distance” (4.1) of the reference below for better or worse.

There is a certain tendency that exact matches of components are rather strongly favored
(if the KanjiVG elements agree this can overrule the unbalanced Wasserstein distance) and
the penalties for translation/scaling/distortion of components are somewhat mild.

The computation time is rather high (depending on the settings and kanji up to several
seconds per kanji pair). This can be alleviated somewhat by keeping the compo_seg_depth
parameters at 3 or lower and setting size = 32 (which goes well with 1wd=1.8).

Future versions will use a much faster line base optimal transport algorithm and further
speed-ups.

14 kanjidistmat

References

Dominic Schuhmacher (2023).
Distance maps between Japanese kanji characters based on hierarchical optimal transport.
ArXiv, doi:10.48550/arXiv.2304.02493

See Also

kanjidistmat, kmatdist

Examples

if (requireNamespace("ROI.plugin.glpk")) {
kanjidist(fivebetas[[4]], fivebetas[[5]])
kanjidist(fivebetas[[4]], fivebetas[[5]], verbose=TRUE)
faster and similar:
kanjidist(fivebetas[[4]], fivebetas[[5]], compo_seg_depthi=2, compo_seg_depth2=2,
size=32, lwd=1.8, verbose=TRUE)
slower and similar:
kanjidist(fivebetas[[4]], fivebetas[[5]], size=64, 1lwd=3.2, verbose=TRUE)

kanjidistmat Compute distance matriz based on hierarchical optimal transport
for lists of kanjivec objects

Description

Individual distances are based on kanjidist.

Usage

kanjidistmat (
klist,
klist2 = NULL,
compo_seg_depth = 3,
p=1,
C=0.2,
approx = c("grid", "pc", "pcweighted"),
type = c("rtt", "unbalanced", "balanced"),
size = 48,
lwd = 2.5,
density = 30,
verbose = FALSE,
minor_warnings = FALSE

https://doi.org/10.48550/arXiv.2304.02493

kanjimat 15

Arguments
klist a list of kanjimat objects.
klist2 an optional second list of kanjimat objects.

compo_seg_depth
integer > 1. Specifies for all kanji the deepest level included for component
matching. If 1, only the kanji itself is used.

p, C, type, approx, size, lwd, density, verbose, minor_warnings
the same as for the function kanjidist, with the sole difference that
minor_warnings defaults to FALSE here.

Value

A matrix of dimension length(klist) x length(klist2) having as its (¢, 7)-th entry the
distance between klist[[i]] and k1ist2[[j]]. If klist2 is not provided it is assumed
to be equal to klist, but computation is more efficient as only the upper triangular part
is computed and then symmetrized with diagonal zero.

Warning

[Experimental]
The same precautions apply as for kanjidist.

See Also

kanjidist, kmatdistmat

Examples

kanjidistmat (fivebetas)

kanjimat Create kanjimat objects

Description

Create a (list of) kanjimat object(s), i.e. bitmap representations of a kanji using a certain
font-family and other typographical parameters.

Usage
kanjimat (
kanji,
family = NULL,
size = NULL,

margin = O,

16

kanjimat

antialias = TRUE,

save = FALSE,

overwrite = FALSE,
simplify = TRUE,

Arguments
kanji
family
size

margin

antialias

save

overwrite

simplify

Value

a (vector of) character string(s) containing kanji.
the font-family to be used. For details see vignette.
the sidelength of the (square) bitmap

numeric. Extra margin around the character. Defaults to 0 which leaves
a relatively slim margin. Positive values increase this margin, negative
values decrease it (which usually cuts off part of the kanji).

logical. Shall antialiasing be performed?

logical or character. If FALSE return the (list of) kanjimat object(s).
Otherwise save the result as an rds file in the working directory (as kmat-
save.rds) or under the file path provided.

logical. If FALSE return an error (before any computations are done)
if the designated file path already exists. Otherwise an existing file is
overwritten.

logical. Shall a single kanjimat object be returned (instead a list of one)
if kanji is a single kanji?

futher arguments passed to png. This is for extensibility. The only argu-
ment that may currently be used is type. Trying to change sizes, units,
colors or fonts by this argument results in an error or an undesirable
output.

A list of objects of class kanjimat or, if only one kanji was specified and simplify is TRUE,
a single objects of class kanjimat. If save = TRUE, the same is (saved and) still returned

invisibly.

Warning

If no font family is provided, the default Chinese font WenQuanYi Micro Hei that comes

with the package
ognizable, but qu

showtext is used. This means that the characters will typically be rec-
ite often look odd as Japanese characters. We strongly advised that a

Japanese font is used as detailed above.

Examples

res <- kanjimat(kanji="", size = 128)

kanjivec

17

kanjivec

Create kangivec objects from kanjivg data

Description

Create a (list of) kanjivec object(s). Each object is a representation of the kanji as a
tree of strokes based on .svg files from the KanjiVG database containing further, derived

information.

Usage

kanjivec(
kanji,
database =
flatten =

NULL,
"intelligent",
bezier_discr

= c("svgparser", "eqtimed", "egspaced"),

save = FALSE,
overwrite = FALSE,
simplify = TRUE

Arguments
kanji

database

flatten

bezier_discr

save

overwrite

a (vector of) character string(s) of one or several kanji.

the path to a local copy of (a subset of) the KanjiVG database. It is
expected that the svg files reside at this exact location (not in a sub-
directory). If NULL, an attempt is made to read the svg file(s) from the
KanjiVG GitHub repository (after prompting for confirmation, which can
be switched off via the option ask_github).

logical. Should nodes that are only-children be fused with their parents?
Alternatively one of the strings "intelligent”, ”inner” or “leaves”. Al-
though the first is the default it is experimental and the precise meaning
will change in the future; see details.

character. How to discretize the Bézier curves describing the strokes. If
"svgparser” (the only option available prior to kanjistat 0.12.0), code from
the non-CRAN package svgparser is used for discretizing at equal time
steps. The new choices "eqtimed” and “eqspaced” discretize into fewer
points (and allow for more customization underneath). The former creates
discretization points at equal time steps, the latter at equal distance steps
(to a good approximation).

logical or character. If FALSE return the (list of) kanjivec object(s).
Otherwise save the result as an rds file in the working directory (as kvec-
save.rds) or under the file path provided.

logical. If FALSE return an error (before any computations are done)
if the designated file path already exists. Otherwise an existing file is
overwritten.

18 kanjivec

simplify logical. Shall a single kanjivec object be returned (instead a list of one)
if kanji is a single kanji?

Details

A kanjivec object contains detailed information on the strokes of which an individual kanji
is composed including their order, a segmentation into reasonable components (“radicals”
in a more general sense of the word), classification of individual strokes, and both vector
data and interpolated points to recreate the actual stroke in a Kyoukashou style font. For
more information on the original data see http://kanjivg.tagaini.net/. That data is
licenced under Creative Commons BY-SA 3.0 (see licence file of this package).

The original .svg files sometimes contain additional <g> elements that provide information
about the current group of strokes rather than establishing a new subgroup of its own.
This happens typically for information that establishes coherence with another part of the
tree (by noting that the current subgroup is also part 2 of something else), but also for
variant information. With the option flatten = TRUE the extra hierarchy level in the tree
is avoided, while the original information in the KanjiVG file is kept. This is achieved by
fusing only-children to their parents, giving the new node the name of the child and all
its attributes, but prefixing p. to the attribute names of the parent (the parents’ "names”
attribute is discarded, but can be reconstructed from the parents’ id). Removal of several
hierarchies in sequence can lead to attribute names with multiple p. in front. Fusing to
parents is suppressed if the parent is the root of the hierarchy (typically for one-stroke
kanji), as this could lead to confusing results.

The options flatten = "inner" and flatten = "leaves" implement the above behavior
only for the corresponding type of node (inner nodes or leaves). The option flatten =
"intelligent" tries to find out in more sophisticated ways which flattening is desirable
and which is not (it will flatten rather conservatively). Currently nodes without an element
attribute that have only one child are flattened away (one example where this is reasonable
is in kanji kbase[187,]), as are nodes with an element attribute and only one child if this
child is also an inner node and has the same element and part attribute as the parent, but
both have no number (this would be problematic for any component-building code in the
particular case of kanji kbase[1111,]).

A kanjivec object has components

char the kanji (a single character)
hex its Unicode codepoint (integer of class hexmode)
padhex the Unicode codepoint padded with zeros to five digits (mode character)

family the font on which the data is based. Currently only ”schoolbook” (to be extended
with "kaisho” at some point)

nstrokes the number of strokes in the kanji

ncompos a vector of the number of components at each depth of the tree

nveins the number of veins in the component structure

strokedend the decomposition tree of the kanji as an object of class dendrogram

components the component structure by segmentation depth (components can overlap) in
terms of KanjiVG elements and their depth-first tree coordinates

http://kanjivg.tagaini.net/

kanjivec 19

veins the veins in the component structure. Each vein is represented as a two-column
matrix that lists in its rows the indices of components (starting at the root, which in
the component indexing is ¢(1,1))

stroketree the decomposition tree of the kanji, a list containing the full information of
the the KanjiVG file (except some top level attributes)

stroketree is a close representation of the KanjiVG svg file as list object with some serious
nesting of sublists. The XML attributes become attributes of the list and its elements. The
user will usually not have to look at or manipulate stroketree directly, but strokedend
and compents are derived from it and other functions may process it further.

The main differences to the svg file are

1. the actual strokes are not only given as d-attributes describing Bézier curves, but but
also as two-column matrices describing discretizations of these curves. These matrices
are the actual contents of the innermost lists in stroketree, but are more conveniently
accessed via the function get_strokes. Starting with version 0.13.0, there is also an
additional attribute "beziermat”, which describes the Bézier curves for the stroke in
a 2 x (143n) matrix format. The first column is the start point, then each triplet of
columus stands for control point 1, control point 2 and end point (=start point of the
next Bézier curve if any).

2. The positions of the stroke numbers (for plotting) are saved as an attribute stro-
kenum__coords to the entire stroke tree rather than a separate element.

strokedend is more easy to examine and work with due to various convenience functions for
dendrograms in the packages stats and dendextend, including str and plot.dendrogram.
The function plot.kanjivec with option type = "dend" is a wrapper for plot.dendrogram
with reasonable presets for various options.

The label-attributes of the nodes of strokedend are taken from the element (for inner
nodes) and type (for leaves) attributes of the .svg files. They consist of UTF-8 characters
representing kanji parts and a combination of UTF-8 characters for representing strokes
and may not represent well in all CJK fonts (see details of plot.kanjivec). If element and
type are missing in the .svg file, the label assigned is the second part of the id-attribute,
e.g. gd or s9.

The components at a given level can be plotted, see plot.kanjivec with type = "kanji".
Both components and veins serve mainly for the computation of kanji distances.

Value

A list of objects of class kanjivec or, if only one kanji was specified and simplify is TRUE,
a single objects of class kanjivec. If save = TRUE, the same is (saved and) still returned
invisibly.

See Also

plot.kanjivec, str.kanjivec

20

Examples

kmatdist

if (interactive()) {
Try to load the svg file for the kanji from GitHub.

res <- kanjivec(" ", database=NULL)
str(res)

}

fivebetas # sample kanjivec data

str(fivebetas[[1]])

kmatdist Compute the unbalanced or balanced Wasserstein distance be-
tween two kanjimat objects
Description

This gives the dissimilarity of pixel-images of the kanji based on how far mass (or ”ink”)
has to be transported to transform one image into the other.

Usage

kmatdist (
k1,
k2,
p=1,
CcC=0.2,

type = c("unbalanced", "balanced"),
output = c("dist", "all")

Arguments
k1, k2
p

type

output

two objects of type kanjimat.

the order of the Wasserstein distance. All distances and a potential
penalty are taken to the p-th power (which is compensated by taking
the p-th root after summation).

the penalty for extra mass if type="unbalanced", i.e. we add C”p per
unit of extra mass (before applying the p-th root).

the type of Wasserstein metric. "unbalanced" means the pixel values
in the two images are interpreted as mass. The total masses can be very
different. Extra mass can be disposed of at cost C”p per unit. "balanced"
means the pixel values are normalized so that both images have the same
total mass 1. Everything has to be transported, i.e. disposal of mass is
not allowed.

the requested output. See return value below.

kmatdistmat 21

Value

If output = "dist", a single non-negative number: the unbalanced or balanced Wasserstein
distance between the kanji. If output = "all" a list with detailed information on the
transport plan and the disposal of pixel mass. See unbalanced for details.

See Also

kmatdistmat, kanjidist

Examples

res <- kmatdist(fivetrees1[[1]], fivetrees1[[5]], p=1, C=0.1, output="all")
plot(res, what="plan", angle=20, lwd=1.5)

plot(res, what="trans")

plot(res, what="extra")

plot(res, what="inplace")

kmatdistmat Compute distance matriz for lists of kanjimat objects

Description

Apply kmatdist to every pair of kanjimat objects to compute the unbalanced or balanced
Wasserstein distance.

Usage
kmatdistmat (
klist,
klist2 = NULL,
p=1,
Cc=20.2,
type = c("unbalanced", "balanced")
)
Arguments
klist a list of kanjimat objects.
klist2 an optional second list of kanjimat objects.
p, C, type the same as for the function kmatdist.
Value

A matrix of dimension length(klist) x length(klist2) having as its (i, 7)-th entry the
distance between klist[[i]] and klist2[[j]]. If k1ist2 is not provided it is assumed
to be equal to klist, but the computation is more efficient as only the upper triangular
part is computed and then symmetrized with diagonal zero.

22 lookup

See Also

kmatdist, kanjidistmat

Examples

kmatdistmat (fivetreesl)
kmatdistmat (fivetreesl, fivetreesl) # same result but slower
kmatdistmat (fivetreesl, fivetrees2) # note the smaller values on the diagonal

kreadmean Kangi readings and meanings

Description
Data set of all kanji readings and meanings from the KANJIDIC2 dataset in an R list
format. For convenient access to this data use function lookup.

Usage

kreadmean

Format

An object of class 1ist of length 13108.

Source

KANJIDIC? file by Jim Breen and The Electronic Dictionary Research and Development
Group (EDRDG)

https://www.edrdg.org/wiki/index.php/KANJIDIC_Project

The use of this data is covered by the Creative Commons BY-SA 4.0 License.

lookup Look up kanji

Description

Return readings and meanings or information from kbase or kmorph.

Usage

lookup(kanji, what = c("readmean", "basic", "morphologic"))

https://www.edrdg.org/wiki/index.php/KANJIDIC_Project

options 23

Arguments
kanji a (vector of) character strings containing kanji.
what the sort of information to display.

Details

This is a very basic interface for a quick lookup information based on exact knowledge of the
kanji (provided by a Japanese input method or its UTF-8 code). Most of the information
is based on the KANJIDIC?2 file by EDRDG (see thank you page) Please use one of the
many excellent online kanji dictionaries (see e.g.) more sophisticated lookup methods and
more detailed results.

Value

If what is "readmean” the information is output with cat and there is no return value
(invisible NULL) In the other cases the appropriate subsets of the tables kbase and kmorph
are returned

Author(s)

Dominic Schuhmacher <schuhmacher@math.uni-goettingen.de>

Examples

lookup(c(" u’ n ||, n ||))
lookup(" ") # same

options Kangjistat Options

Description

Set or examine global kanjistat options.
Usage

kanjistat_options(...)

get_kanjistat_option(x)

Arguments

any number of options specified as name = value

X name of an option given as character string.

24 plot.kanjimat

Value

kanjistat_options returns the list of all set options if there is no function argument.
Otherwise it returns list of all old options. get_kanjistat_option returns the current
value set for option x or NULL if the option is not set.

plot.kanjimat Plot kanjimat object

Description

Plot kanjimat object

Usage

S3 method for class 'kanjimat'
plot(
X,
mode = c("dark", "light"),
col = gray(seq(0, 1, length.out = 256)),

)
Arguments
X object of class kanjimat.
mode character string. If "dark” the original grayscale values are used, if "light”
they are inverted. With the default grayscale color scheme the kanji is
plotted white-on-black for "dark” and black-on-white for "light”.
col a vector of colors. Typically 256 values are enough to keep the full infor-
mation of an (antialiased) kanjimat object.
further parameters passed to image.
Value

No return value, called for side effects.

plot.kanjivec

25

plot.kanjivec

Plot kanjivec objects

Description

Plot kanjivec objects

Usage

S3 method for class 'kanjivec'

plot(
X,

type = c("kanji", "dend"),
seg_depth = 0,
palette = "Dark 3",

pal.extra

0,

numbers = FALSE,
offset = ¢(0.025, 0),
family = NULL,

lwd = 8,

Arguments
X

type

seg_depth

palette

pal.extra

numbers

offset

an object of class kanjivec

either "kanji” or "dend”. Whether to plot the actual kanji, coloring strokes
according to levels of segmentation, or to plot a representation of the
tree structure underlying this segmentation. Among the following named
parameters, only family is for use with type = "dend"; all others are for
type = "dend".

an integer. How many steps down the segmentation hierarchy we use
different colors for different groups. If zero (the default), only one color
is used that can be specified with col passed via ... as usual

a valid name of a hcl palette (one of hel.pals()). Used for coloring the
components if seg_depth is > 0.

an integer. How many extra colors are picked in the specified palette.
If this is 0 (the default), palette is used with as many colors as we have
components. Since many hcl palettes run from dark to light colors, the
last (few) components may be too light. Increasing pal.extra then makes
the component colors somewhat more similar, but the last component
darker.

logical. Shall the stroke numbers be displayed.

the (x,y)-offset for the numbers relative to the positions from kanjivg
saved in the kanjivec object. Either a vector of length 2 specifying some

26 plotkanji

fixed offset for all numbers or a matrix of dimension kanjivec$nstrokes

times 2.
family the font-family for labeling the nodes if type = dend. See details.
lwd the usual line width graphics parameter.

further parameters passed to 1ines if type = "kanji" and to plot.dendrogram
if type = "dend".

Details

Setting up nice labels for the nodes if type = "dend" is not easy. For many font families
it appears that some "kanji components” cannot be displayed in plots even with the help
of package showtext and if the font contains glyphs for the corresponding codepoints that
display correctly in text documents. This concerns in increasing severity of the problem
Unicode blocks 2F00-2FDF (Kangxi Radicals), 2E80-2EFF (CJK Radicals Supplement)
and 31C0-31EF (CJK Strokes). For the strokes it seems nearly impossible which is why
leaves are simply annotated with the number of the strokes.

For the other it is up to the user to find a suitable font and pass it via the argument font
family. The default family = NULL first tries to use default_font if this option has been
set (via kanjistat_options) and otherwise uses wqy-microhei, the Chinese default font
that comes with package showtext and cannot display any radicals from the supplement.

On a Mac the experience is that "hiragino_sans” works well. In addition there is the issue
of font size which is currently not judiciously set and may be too large for some (especially
on-screen) devices. The parameter cex (via . ..) fixes this.

Value

No return value, called for side effects.

Examples

kanji <- fivebetas[[2]]
plot(kanji, type = "kanji", seg_depth = 2)
plot(kanji, type = "dend")
gives a warning if get_kanjistat_option("default_font") is NULL

plotkanji Plot kangi

Description

Write kanji to a graphics device.

plotkanji 27

Usage
plotkanji(
kanji,
device = "default",
family = NULL,

factor = 10,
width = NULL,
height = NULL,

)
Arguments

kanji a vector of class character specifying one or several kanji to be plotted.

device the type of graphics device where the kanji is plotted. Defaults to the
user’s default type according to getOption("device").

family the font family or families used for writing the kanji. Make sure to add
the font(s) first by using font_add; see details. If family is a vector of
several font families they are matched to the characters in kanji (and
possibly recycled).

factor a maginification factor applied to the font size (typically 12 points).

width, height the dimensions of the device.

further parameters passed to the function opening the device (such as a
file name for devices that create a file).

Details

This function writes one or several kanji to a graphics device in an arbitrary font that
has been registered, i.e., added to the database in package sysfonts. For the latter say
font_add or font_families to verify what fonts are available.

For further information see Working with Japanese fontsin vignette("kanjistat", package
= "kanjistat"). plotkanji uses the package showtext to write the kanji in a large font
at the center of a new device of the specified type. specify device = "current" to write
the kanji to the current device. It is now recommended to simply use graphics::text in
combination with showtext: :showtext_auto instead.

Value

No return value, called for side effects.

Warning

If no font family is provided, the default Chinese font WenQuanYi Micro Hei that comes
with the package showtext is used. This means that the characters will typically be rec-
ognizable, but quite often look odd as Japanese characters. We strongly advised that a
Japanese font is used as detailed above.

28 pooled__similarity

Examples

plotkanji(" ")
plotkanji(" ")

pooled_similarity Precomputed kanji distances

Description

Precomputed kanji distances

Usage

pooled_similarity

Format

A tibble containing kanji similarity judgments by 3 "native or native-like” speakers of
Japanese. For each row, the pivot kanji was compared to a list of potential distractors.
From the distractors, the subjects selected one character which they found particularly
easy to confuse with the pivot. For the exact methodology, see the original study referenced
below.

Source

Datasets from https://lars.yencken.org/datasets, made available under the Creative
Commons Attribution 3.0 Unported licence.

Collected as part of Yencken, Lars (2010) Orthographic support for passing the reading
hurdle in Japanese. PhD Thesis, University of Melbourne, Melbourne, Australia.

References

Yencken, Lars, & Baldwin, Timothy (2008). Measuring and predicting orthographic associ-
ations: Modelling the similarity of Japanese kanji. In: Proceedings of the 22nd International
Conference on Computational Linguistics (Coling 2008), pp. 1041-1048.

Examples

Get kanji characters that were found to be easily confused with
pooled_similarity[pooled_similarity$selected == " ", I$pivot

https://lars.yencken.org/datasets
https://lars.yencken.org/papers/phd-thesis.pdf
https://lars.yencken.org/papers/phd-thesis.pdf

print.kanjivec 29

print.kanjivec Print basic information about a kanjivec object

Description

Print basic information about a kanjivec object

Usage

S3 method for class 'kanjivec'
print(x, dend = FALSE, ...)

Arguments
X an object of class kanjivec.
dend whether to print the structure of the strokedend component.
further parameters passed to print.default.
Value

No return value, called for side effects.

read_kanjidic2 Read a KANJIDIC? file

Description

Perform basic validity checks and transform data to a standardized list or keep as an object
of class xml_document (package xml12).

Usage

read_kanjidic2(fpath = NULL, output = c("list", "xml"))

Arguments

fpath the path to a local KANJIDIC?2 file. If NULL (the default) the most
recent KANJIDIC?2 file is downloaded from https://www.edrdg.org/
kanjidic/kanjidic2.xml.gz after asking for confirmation.

output one of "list" or "xml". The desired type of output.

https://www.edrdg.org/kanjidic/kanjidic2.xml.gz
https://www.edrdg.org/kanjidic/kanjidic2.xml.gz

30 read__kanjidic2

Details

KANJIDIC2 contains detailed information on all of the 13108 kanji in three main Japanese
standards (JIS X 0208, 0212 and 0213). The KANJIDIC files have been compiled and
maintained by Jim Breen since 1991, with the help of various other people. The copyright
is now held by the Electronic Dictionary Research and Development Group (EDRDG).
The files are made available under the Creative Commons BY-SA 4.0 license. See https:
//www.edrdg.org/wiki/index.php/KANJIDIC_Project for details on the contents of the
files and their license.

If output = "xml", some minimal checks are performed (high level structure and total
number of kanji).

If output = "1list", additional validity checks of the lower level structure are performed.
Most are in accordance with the file’s Document Type Definition (DTD). Some additional
check concern some common patterns that are true about the current KANJIDIC? file (as
of December 2023) and seem unlikely to change in the near future. This includes that
there is always at most one rmgroup entry in reading_meaning. Informative warnings are
provided if any of these additional checks fail.

Value

If output = "xml", the exact XML document obtained from xml2::read_ xml. If output =
"list", a list of lists (the individual kanji), each with the following seven components.

e literal: a single UTF-8 character representing the kanji.

e codepoint: a named character vector giving the available codepoints in the unicode
and jis standards.

o radical: a named numeric vector giving the radical number(s), in the range 1 to 214.
The number named classical is as recorded in the KangXi Zidian (1716); if there
is a number named nelson_c, the kanji was reclassified in Nelson’s Modern Reader’s
Japanese-English Character Dictionary (1962/74).

e misc: a list with six components

— grade: the kanji grade level. 1 through 6 indicates a kyouiku kanji and the grade
in which the kanji is taught in Japanese primary school. 8 indicates one of the
remaining jouyou kanji learned in junior high school, and 9 or 10 are jinmeiyou
kanji. The remaining (hyougai) kanji have NA as their entry.

— stroke_count: The stroke count of the kanji, including the radical. If more than
one, the first is considered the accepted count, while subsequent ones are common
miscounts.

— variant: a named character vector giving either a cross-reference code to another
kanji, usually regarded as a variant, or an alternative indexing code for the current
kanji. The type of variant is given in the name.

— freq: the frequency rank (1 = most frequent) based on newspaper data. NA if not
among the 2500 most frequent.

— rad_name: a character vector. For a kanji that is a radical itself, the name(s) of
the radical (if there are any), otherwise of length 0.

— jlpt: The Japanese Language Proficiency Test level according to the old four-
level system that was in place before 2010. A value from 4 (most elementary) to
1 (most advanced).

https://www.edrdg.org/wiki/index.php/KANJIDIC_Project
https://www.edrdg.org/wiki/index.php/KANJIDIC_Project

samplekan 31

o dic_number: a named character vector (possibly of length 0) giving the index numbers

(for some kanji with letters attached) of the kanji in various dictionaries, textbooks
and flashcard collections (specified by the name). For Morohashi’s Dai Kan-Wa Jiten,
the volume and page number is also provided in the format moro.VOL.PAGE.

query_code: a named character vector giving the codes of the kanji in various query
systems (specified by the name). For Halpern’s SKIP code, possible misclassifications
(if any) of the kanji are also noted in the format mis.skip. TYPE, where TYPE indicates
the type of misclassification.

reading_meaning: a (possibly empty) list containing zero or more rmgroup compo-
nents creating groups of readings and meanings (in practice there is never more than
one rmgroup currently) as well as a component nanori giving a character vector (pos-
sibly of length 0) of readings only associated with names. Each rmgroup is a list with
entries:

— reading: a (possibly empty) list of entries named from among pinyin, korean_r,
korean_h, vietnam, ja_on and ja_kun, each containing a character vector of the
corresponding readings

— meaning: a (possibly empty) list of entries named with two-letter (ISO 639-1)
language codes, each containing a character vector of the corresponding meanings.

See Also

kanjidata, kreadmean

Examples

if (interactive()) {
read_kanjidic2("kanjidic2.xml")

}

samplekan Sample kanji from a set

Description

Sample kanji from a set

Usage
samplekan (
set = c("kyouiku", "jouyou", "jinmeiyou", "kanjidic"),
size = 1,
replace = FALSE,
prob = NULL

32 sedist

Arguments
set a character string specifying the set of kanjis to sample from.
size a positive number, the number of samples.
replace logical. Sample with replacement?
prob currently without effect.
Value

a vector of length size containing the individual characters

Examples

(sam <- samplekan(size = 10))
lookup (sam)

sedist Compute the stroke edit distances between two sets of kanji

Description

Variants of the stroke edit distance proposed by Yencken (2010). Each kanji is encoded as
sequence of stroke types according to its stroke order, using the type attribute from the
kanjiVG data. Then the edit distance (a.k.a.\ Levenshtein distance) between sequences is
computed and divided by the maximum of the number of strokes

Usage

sedist(kl, k2, type = c("full", "before_slash", "first"))

Arguments
k1, k2 atomic vectors or lists of kanji in any format that can be treated by
convert_kanji()
type the type of stroke edit distance to compute. See details.
Details

The kanjiVG type attribute is a single string composed of a CJK strokes Unicode character,
an optional latin letter providing further information and possibly a variant (another CJK
strokes character with optional letter) separated by ”/”. If type is "full”* a match is only
counted if two strings are exactly the same, ”before_slash” ignores any slashes and what
comes after them, "first” only considers the first character of each string (so the first CJK
stroke character) when counting matches.

The stroke edit distance used by Yencken (2010) is obtained by setting type = 7all” (the
default), except that the underlying kanjiVG data has significantly changed since then.
Comparing with the values in dstrokedit we get an agreement of 96.3 percent, whereas the
other distances disagree by a small amount (usually 1-2 edit operations).

str.kanjivec 33

Value

A length(k1l) x length(k2) matrix of stroke edit distances.

Warning

Requires kanjistat.data package.

References

Yencken, Lars (2010). Orthographic support for passing the reading hurdle in Japanese.
PhD Thesis, University of Melbourne, Australia

Examples

indl <- 384
k1l <- convert_kanji(indl, "character")
ind2 <- which(dstrokedit[ind1l,] > 0)
dstrokedit contains only the "closest" kanji
k2 <- convert_kanji(ind2, "character")
row_a <- dstrokedit[indl, ind2]
if (requireNamespace("kanjistat.data", quietly = TRUE)) {
row_b <- sedist(kl, k2)
mat <- rbind(row_a, row_b)
rownames (mat) = c(kl, k1)
colnames(mat) = k2
mat

str.kanjivec Compactly display the structure of a kanjivec object

Description

Compactly display the structure of a kanjivec object

Usage
S3 method for class 'kanjivec'
str(object, ...)

Arguments
object an object of class kanjivec.

further parameters passed to str for all but the stroketree component
of object.

Value

No return value, called for side effects.

Index

x datasets
distdata, 6
fivebetas, 7
fivetrees, 8
kanjidata, 10
kreadmean, 22
pooled_similarity, 28

cjk_escape, 2

codepoint, 3

codepointToKanji (codepoint), 3
compare_neighborhoods, 4
convert_kanji, 5
convert_kanji(), 32

dendextend, 19
distdata, 6
dstrokedit, 32
dstrokedit (distdata), 6
dyehli (distdata), 6

fivebetas, 7

fivetrees, 8

fivetreesl (fivetrees), 8
fivetrees2 (fivetrees), 8
fivetrees3 (fivetrees), 8
font_add, 27
font_families, 27

get_kanjistat_option (options), 23
get_strokes, 9, 10, 19
get_strokes_compo, 9, 9

image, 24

kanji distances, 19
kanjidata, 10, 31
kanjidist, 12, 14, 15, 21
kanjidist (), 4
kanjidistmat, 14, 14, 22
kanjimat, &, 15, 15, 21

kanjistat_options, 26
kanjistat_options (options), 23
kanjiToCodepoint (codepoint), 3
kanjivec, 5, 7, 17, 25

kbase, I, 60

kbase (kanjidata), 10
kmatdist, 8, 14, 20, 21, 22
kmatdistmat, 15, 21, 21

kmorph (kanjidata), 10
kreadmean, 22, 31

lookup, 11, 22, 22

option, 17
options, 23

plot.dendrogram, 19
plot.kanjimat, 24
plot.kanjivec, 19, 25
plotkanji, 26

png, 16
pooled_similarity, 28
print.kanjivec, 29

read_kanjidic2, 29

samplekan, 31
sedist, 32

str, 19
str.kanjivec, 19, 33

unbalanced, 21

xml2: :read_xml, 30
xml_document, 29

34

	cjk_escape
	codepoint
	compare_neighborhoods
	convert_kanji
	distdata
	fivebetas
	fivetrees
	get_strokes
	get_strokes_compo
	kanjidata
	kanjidist
	kanjidistmat
	kanjimat
	kanjivec
	kmatdist
	kmatdistmat
	kreadmean
	lookup
	options
	plot.kanjimat
	plot.kanjivec
	plotkanji
	pooled_similarity
	print.kanjivec
	read_kanjidic2
	samplekan
	sedist
	str.kanjivec
	Index

